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Abstract. We study a one-dimensional driven lattice gas model in which quenched random
jump rates are associated with the particles. Under suitable conditions on the distribution of jump
rates the model displays a phase transition from a high-density ‘laminar’ phase with product
measure to a low-density ‘jammed’ phase in which the interparticle spacings have no stationary
distribution. Using a waiting time representation the phase transition is shown to be equivalent
to a pinning transition of directed polymers with columnar defects. The phenomenon is argued
to have a natural realization in traffic flow.

A set of equivalent problems including driven diffusion [1], interface motion [2] and directed
paths (or polymers) in random media [3] has recently reached a paradigmatic status in non-
equilibrium statistical physics [4]. In this letter we show how these systems react to the
presence of a particular type of quenched disorder. Our starting point is a class of exactly-
solved models introduced by Benjamini, Ferrari and Landim (BFL) [5, 6]. We simplify
the BFL model to allow for explicit analytic computations which are supplemented with
computer simulations, and interpret the results in the diverse contexts mentioned above.

Let us first provide an intuitive picture of the basic phenomenon. Imagine traffic on a
single-lane highway with no possibility of passing. Different cars have different preferred
speeds—compare e.g. a Ferrari to a 2CV. In the absence of passing it is clear that the
overall speed will be set by the slowest cars. However, at high traffic density all cars
have to move more slowly than their preferred speeds, and the differences between the
cars are irrelevant. In contrast, at low density, jams will form behind the slow cars. Our
central result implies that, under suitable conditions on the distribution of preferred speeds,
a sharp phase transitionseparates the high-density ‘laminar’ phase from the low-density
‘jammed’ phase. Quantitatively, the two phases are characterized by the fluctuations in the
distances between cars, which are bounded in the laminar phase but diverge in the jammed
phase; more precisely, the spacings between cars cease to have a (normalizable) stationary
distribution. At the transition point the distribution has a power-law tail. As will be detailed
below, the jammed phase has been studied previously in the contexts of interface motion
with random growth rates [7] and of directed polymers with columnar disorder [8, 9].

The model we wish to study is a modification of the basic one-dimensional driven
lattice gas, known in the mathematical literature as the (totally) asymmetric simple exclusion
process (ASEP) [10, 11]; related models have been extensively used for the simulation of
traffic flow [12]. Each sitex of a one-dimensional lattice with periodic boundary conditions
(a ring) is either empty or occupied by one particle (‘car’). Particles move to the right
to vacant nearest-neighbour sites, according to exponentially distributed waiting times; this
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corresponds to a random sequential updating procedure. Letxi denote the position of the
ith particle andpi its jump rate (the labelling is preserved by the dynamics). In the standard
ASEPpi ≡ p for all i.

In the general case, where thepi depend oni, one can only hope for the interparticle
distances to become stationary, rather than, for example, the density at a fixed site. We,
therefore, introduce the variablesui = xi+1−xi −1 to denote the size of the gap (the number
of vacant sites) in front of theith particle. The dynamics of theui defines a ‘zero-range
process’ [10, 11]: if we regardui as a particle occupation number on an auxiliary lattice,
then au-particle at sitei jumps to sitei − 1 at ratepi independent of the state at sitei − 1;
in this sense, theu-particles have zero interaction range.

It is well known [10, 11, 13] that zero-range processes have product stationary measures
even when the transition rates are not translationally invariant. In the present case this
implies that the product of the exponential distributions

Prob[ui = k] = (1 − αi)α
k
i (1)

satisfies the stationarity condition, provided

piαi = constant≡ v (2)

for all i, wherev is the (common) average velocity of the particles.
Of course, this solution is viable only if (1) is normalizable, i.e.αi < 1 for all i, or

v < c ≡ min
i

{pi}. (3)

The actual value ofv is determined by the average particle densityρ, which is conserved
by the dynamics. The mechanism which leads to the possibility of a phase transition in the
model can now be described as follows. For a given densityρ, we use the product measure
(1) to compute the velocityv(ρ). If v < c the solution is valid and the system is in the
laminar state, with bounded fluctuations and no correlations. If, on the other hand, it is
found thatv(ρ∗) = c for someρ∗ > 0, then the product measure solution breaks down and
the system enters a jammed state at low densitiesρ < ρ∗.

The existence of a phase transition at a critical densityρ∗ was established by BFL for a
more general case, in which particles jump backwards at rateqi . The stationarity condition
(2) then becomespiαi − qiαi−1 = v, which leads to a complicated expression for theαi

[5, 6]. The fully asymmetric model is, therefore, better suited for explicit computations, at
the expense of more restrictive conditions on the distribution of jump rates [5].

For the purpose of illustration, consider first the case of a single slow ‘defect’ particle,
p1 = c < 1 andpi = 1 for i 6= 1 [14]. Then the average velocity in the laminar state is
determined by the majority of fast particles, and is given by the expressionv(ρ) = 1 − ρ

of the pure system. The laminar state breaks down atρ∗ = 1 − c. While the mathematical
characterization of the jammed state is non-trivial, it is intuitively obvious what will happen:
for ρ < ρ∗ the fast particles pile up behind the defect, forming a jam of densityρ∗. In a
finite system ofL sites a steady state is reached which has a gap of sizeL(1 − ρ/ρ∗) in
front of the slow particle, while in the infinite system the gap grows with time as(ρ∗ − ρ)t

and the density in front of the gap remains atρ.
The focus of this paper is on the case wherepi are independent random variables

drawn from a common distributionf (p) with support on the interval [c, 1], c > 0. Here
the velocityv(ρ) is determined implicitly through the relation

1 − ρ

ρ
= 〈ui〉 = v

∫ 1

c

dp f (p)

p − v
(4)
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which follows by computing the average gap size (for a fixed set of rates)〈ui〉 = αi/(1−αi)

using (1), and then performing the disorder average denoted by the overbar. Similarly the
stationary variance of the gap size can be expressed as

12 ≡ 〈u2
i 〉 − 〈ui〉2 = −vρ2

(
dv

dρ

)−1

. (5)

The occurrence of a phase transition at some finite densityρ∗ is related to the existence
of the integral on the right-hand side of (4) atv = c, if the integral is finite, its value equals
(1 − ρ∗)/ρ∗ and a transition occurs. Thus, a transition is possible only iff (p) vanishes
sufficiently rapidly forp → c. Introducing an exponentn such that

f (p) ∼ (p − c)n p → c (6)

the various behaviours can be classified as follows. (i) Forn 6 0 there is no transition at
finite density; however, in general, there is a singularity atρ = 0, e.g. forn = 0 the gap
size fluctuations diverge as12 ∼ exp(1/ρ) for ρ → 0. (ii) For 0 < n 6 1 the transition
is of second orderin the sense that the first derivative dv/dρ vanishes asρ → ρ∗ from
above, and correspondingly12(ρ) diverges (cf equation (5)), as12 ∼ (ρ − ρ∗)−(1−n)/n.
An example of this case is shown in figure 1. (iii) Forn > 1 the transition is offirst order,
i.e. dv/dρ and 12 have finite limits asρ → ρ∗ from above. (iv) For anyn > 0 the gap
distribution at the transition has a power-law tail; performing the disorder average of the
stationary distribution (1) one finds that, for largek,

Prob[ui = k]|ρ=ρ∗ ∼ k−(n+2) (7)

and consequently moments of order higher thann + 1 diverge forρ → ρ∗.
Since the product measure solution breaks down atρ = ρ∗, it does not give any

information about the nature of the jammed phase; nevertheless a plausible scenario can
be gathered from heuristic reasoning and computer simulations. First, note that due to the
no-passing constraint the overall velocity can never exceedc, and hencev(ρ) ≡ c for all
ρ < ρ∗. This is confirmed by the numerical data forv(ρ) shown in the inset of figure 1.
The stationary state in a finite system is dominated by the slowest particle and thus has
the same structure as in the single defect case, with a single large gap trailed by a jam of
densityρ∗. In the simulations this is easily checked by measuring the stationary value of
12, which is given by12 ≈ (L/ρ)(1−ρ/ρ∗)2 for a single gap configuration (see the main
part of figure 1).

Theapproachto this stationary state, which reflects the behaviour of the infinite system,
is more complicated. Simulations show the appearance of many small gaps in the system,
which subsequently undergo acoarseningprocess characterized by a typical gap spacing
ξ(t) (see inset of figure 2). Under the assumption that the gap distribution can be regarded
as a superposition of small gaps (corresponding to the ‘laminar’ regions of densityρ∗)
and large gaps (regions of density zero), it follows that12(t) ∼ ξ(t). The simulation
data shown in figure 2 indicate a power-law coarsening,ξ(t) ∼ t1/z, with a non-universal
dynamic exponentz which increases with increasingn.

An approximate picture for the long-time coarsening dynamics can be obtained from
an extremal statistics estimate. The particles which cause the jams at timet are obviously
the slowest particles in regions of sizeξ(t). Using the behaviour of the distribution (6)
close to the minimal velocity, it can be shown [15] that the velocity differences of these
‘extremal’ particles are of the order1v ∼ 1/ξ1/(n+1). The time required for two jams to
merge is then of the orderξ/1v, which implies a dynamic exponentz = (n + 2)/(n + 1).
While this expression gives the correct trend, it exceeds the numerical values forn < 1 and
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Figure 1. Numerical (squares) and analytic (full curves) results for the variance of the
interparticle spacing (main figure) and the particle current (inset) for the random rate model
with distribution f (p) = [(n + 1)/(1 − c)n+1](p − c)n with n = 1 andc = 1

2 . For this case
a second-order jamming transition is predicted to occur at densityρ∗ = n(1 − c)/(n + c) = 1

3
(vertical dashed lines). The variance12 has a logarithmic divergence atρ = ρ∗; in the
jammed phase the full curve represents the expression expected for a single gap configuration.
The simulations were carried out with 2000 particles simulated over 106 attempted jumps per
particle.

underestimates them forn > 1 (see figure 2). Possibly this is related to the fact that the
‘laminar’ phase itself has large gap fluctuations atρ = ρ∗ (compare to (7)).

The behaviour of traffic models is usually characterized by thefundamental diagram,
giving the current or flowJ (ρ) = ρv(ρ) as a function of density [12]. In this representation
the jammed phase corresponds to a linear segment of slope dJ/dρ = c for ρ < ρ∗. The
critical densityρ∗ is generally different from the densityρmax corresponding to maximal
flow, dJ/dρ|ρmax = 0. For the second-order case it is easy to see thatρ∗ < ρmax always
(see inset of figure 1), while for the first-order caseρ∗ < ρmax or ρ∗ = ρmax depending on
the parameters.

Next we outline how our model is related to the other problems mentioned in the
introduction. The mapping between exclusion models and moving interfaces is by now
standard [11, 16]. With each particle we associate a ‘height’ variablehi(t) which counts
the number of jumps the particle has performed, starting fromhi(0) = xi(0) − i. This
defines an interfacej = hi on the square lattice of points(i, j), which is a staircase with
step heightsui = hi+1 − hi > 0 and average slope(1 − ρ)/ρ (figure 3; the interface
representation is also used in figure 2). Moving theith particle increaseshi by one. Thus
we are dealing with aninhomogeneous depositionproblem [17], with deposition ratepi in
the ith lattice column, for which the stationary interface shape can be determinedexactly
for any choice of rates which do not violate condition (3). The phase transitions discussed
above correspond tofaceting transitions in which the interface develops facets of infinite
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Figure 2. Transient behaviour of the variance12 for a large system (105 particles) in the
jammed phase at densityρ = 1

3 . The distributionf (p) was chosen as in figure 1, however with

c = 1
3 . The full curves show numerical results for (from top to bottom)n = 2, n = 1, n = 1

2

andn = 1
3 , respectively. The dashed lines indicate power laws with exponents 1/z = 1(n = 2),

2
3(n = 1), 1

2 (n = 1
2) and 1

3(n = 1
3). Inset: time evolution of ‘height’ configurations of 2000

particles forn = 2; note the appearance of large gaps and their subsequent coarsening.

Figure 3. Illustration of the mapping to interface motion and optimal paths. The bold line
shows the interface configuration corresponding to the particle configuration shown above. The
bold dashed line shows an allowed directed path.

slope (the gaps) beyond a critical average inclinationu∗ = (1 − ρ∗)/ρ∗. Inhomogeneous
deposition with quenched random rates was previously investigated in [7]; while some of
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the models considered there can also be mapped onto lattice gases, the resulting exclusion
models have random rates associated withsitesrather than particles, which leads to a much
more difficult problem [5] (see below; in the context of traffic models this kind of disorder
has been considered in [18]).

The interface model can be transformed into an optimal path problem using the waiting
time formulation of the growth process [19]. In this approach one introduces the time
t (i, j) at which the interface first reaches a point(i, j) of the square lattice. It is then easily
seen that the quantityE(i, j) ≡ −t (i, j) is the solution of the following optimization
problem. Consider all paths which are directed along the positivej - and negativei-
directions, ‘transverse’ to the interface (figure 3). Associate with each point of the lattice a
random energyε(i, j), drawn from an exponential distribution with mean〈ε(i, j)〉 = −1/pi

(these are simply the negative random waiting times of the stochastic model). Define the
energy of a path to be the sum of the site energies encountered along the path; thenE(i, j)

is the energy of theoptimal (lowest energy) path that ends at(i, j).
Since the average site energies〈ε(i, j)〉 depend on the column numberi, the random

disorder in the optimal path problem has acolumnar component [8, 9]; slow particles
(small pi) correspond to particularly attractivecolumnar defects. The jamming transition
can, therefore, be reinterpreted as apinning transition, in which the columnar defects force
the optimal path to align with thej -axis. The density in the lattice gas model can be shown
to be related to the average orientation of the path enforced by the boundary conditions
[20]. When the angle between the average orientation and the orientation of the defects
becomes smaller than some critical value, it becomes favourable for the path to follow
the defect over a finite fraction of its length†. The coarsening behaviour in the transient
regime of the lattice gas model (figure 2) can be understood in terms of the ‘evolutionary
hopping’ [8] of the optimal path—as the path becomes longer, more and more favourable
defects become accessible, and the energy landscape (which corresponds, roughly, to the
height configurations shown in figure 2 [19]) reflects the sudden transitions between different
attractors.

Pinning transitions of optimal paths involving linear defects have attracted much
attention recently [21–23], and only a few exact results are known even for single defects
[19, 21]. In the present model the pinning by a single defect proceeds through a rather
trivial first-order transition. We believe that the reason for the simplicity of our model, in
the language of optimal paths, is due to the fact that a path can never return to a defect it
has left (see figure 3); this seems to eliminate some of the subtleties associated with the
competition between the attractive defect and the wandering induced by the bulk disorder.

Evidently an important question concerns the robustness of our results with respect to
modifications of the model. For the single defect case Mallick [24] has recently shown
that the transition persists if the slow defect particle is allowed to be overtaken, with a
small rate, by the fast particles, although the solution becomes much more involved. In
the context of traffic modelling [12] one would like to address the effects of parallel, rather
than random sequential updating; at least for models with maximal velocityvmax = 1 this
is not expected to make a major difference, since these models can still be mapped onto
optimal path problems with slightly different random energy distributions [20, 25]. Finally,
the introduction of open boundary conditions might lead to an interesting interplay between
boundary-induced [19, 26] and disorder-induced phase transitions.

JK wishes to thank the IME, S̃ao Paulo, for its kind hospitality while this work was
begun, and Jean-Philippe Bouchaud, Michael Schreckenberg and Dietrich Wolf for useful

† This simple picture in fact applies only to the first-order transitions, see [20].
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SFB 237Unordnung und grosse Fluktuationen.

Note added in proof. After this work was submitted for publication we became aware of two related papers. First,
Ben-Naimet al [27] obtained the extremal statistics estimate of the dynamic exponentz within a deterministic
traffic model with random velocities. Second, Nagatani [28] studied numerically the ASEP with parallel update
and random rates associated with particles. In our notation he considered the casen = 0 (a uniform distribution)
for which there should be no jammed state at finite density, but large gap fluctuations forρ → 0; this seems to
be consistent with the numerical data [28].
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